拨开荷叶行,寻梦已然成。仙女莲花里,翩翩白鹭情。
IMG-LOGO
主页 文章列表 为什么即使sem_t值为零也没有sem_wait()功能块?

为什么即使sem_t值为零也没有sem_wait()功能块?

白鹭 - 2022-02-11 1970 0 0

我正在尝试为哲学家进餐问题(有五个哲学家)实施一个简单的解决方案,我的解决方案基于以下逻辑:

sem_t S[philosophers_number]
for each philosopher
{
    while(TRUE)
    {
        if(current philosopher number != last philosopher)
        {
            thinking()

            //i is number of current philosopher
            sem_wait(take_chopstick(S[(i 1) % philosophers_number])) // right chopstick
            sem_wait(take_chopstick(S[i])) // left chopstick

            eat()

            sem_post(put_chopstick(S[(i 1) % philosophers_number]))
            sem_post(put_chopstick(S[i]))
        }
        else
        {
            thinking()

            //i is number of current philosopher
            sem_wait(take_chopstick(S[i])) // left chopstick
            sem_wait(take_chopstick(S[(i 1) % philosophers_number])) // right chopstick

            eat()

            sem_post(put_chopstick(S[i]))          
            sem_post(put_chopstick(S[(i 1) % philosophers_number]))  
        }
}

每个哲学家首先思考的时间不到三秒钟

然后如果右边的筷子可用,哲学家会拿它,如果还有左边的筷子可用,哲学家也会拿它,开始吃不到三秒钟

然后哲学家会放下筷子,让其他哲学家使用

为了避免回圈等待,对于最后一位哲学家,我将先拿起左筷子,然后再拿起右筷子,然后继续相同的程序

这是我基于此逻辑实作的代码:

#include <stdio.h>
#include <string.h>
#include <pthread.h>
#include <semaphore.h>
#include <unistd.h>
#include <stdlib.h>

#define THREADS 5
sem_t chopstick[THREADS];

void thinking(int ph_num)
{
    printf("philosopher %d is thinking\n", ph_num);
    int t = rand() % 3;
    sleep(t);// up to 3 secs thinking
}

void eat(int ph_num)
{
    printf("philosopher %d is eating\n", ph_num);
    int t = rand() % 3;
    sleep(t);// up to 3 secs eating
}

void *philosopher(void * ph_num )
{
    int num=(int)ph_num;
    while(1)
    {
        if(num < THREADS - 1)
        {
            thinking(num);
            
            //pick up right chopstick
            sem_wait(&chopstick[(num   1) % THREADS]);

            //to make deadlocks absolutly happen, wait 1 sec then pickup left chopstick
            sleep(1);
            
            //pick up left chopstick
            sem_wait(&chopstick[num]);
        
            eat(num);   

            //put down right chopstick
            sem_post(&chopstick[(num   1) % THREADS]);

            //put down left chopstick
            sem_post(&chopstick[num]);
        }

        else // last one pick left chopstick first, instead of right one to avoid cyclic wait
        {
                        thinking(num);

                        //pick up left chopstick
                        sem_wait(&chopstick[num]);

                        //to make deadlocks absolutly happen, wait 1 sec then pickup left chopstick 
                        sleep(1); 
                        
                        //pick up right chopstick
                        sem_wait(&chopstick[(num   1) % THREADS]);

                        eat(num);

                        //put down left chopstick
                        sem_post(&chopstick[num]);

                        //put down right chopstick
                        sem_post(&chopstick[(num   1) % THREADS]);
        }
    }

    pthread_exit((void *)num);
}

int main ()
{
    for(int i = 0; i < THREADS; i  )
    {
        sem_init(&chopstick[i],0,1);
    }

    pthread_t threads[THREADS];
    
    for(int i = 0; i < THREADS; i  )
        pthread_create(&threads[i], NULL, philosopher, (void *)i);
    
    for(int i = 0; i < THREADS; i  )
        pthread_join(threads[i],NULL);
    return 0;
}

But during debugging this code a problem happened, where chopstick[i] was 0 before sem_wait(&chopstick[num]) instead of blocking current thread, until a chopstick is available sem_wait() carried on, so a philosopher started eating without an actual chopstick.

Can anyone help me figure out where is my problem?

uj5u.com热心网友回复:

您的实作是正确的,您的问题出在除错方法上。如果您使用gdb,您将仅在一个执行绪上停止,而执行绪的其余部分将继续执行,因此在您检查信号量的时间和您进入下一行的时间之间,其他执行绪将继续执行并可以更改您检查过的值。

为了有效地除错执行绪,您需要确保只有当前观察到的执行绪被调度而其余执行绪被阻塞。为此,您需要scheduler-locking在停止执行绪后更改您可以将其设定为onstep,具体取决于您是希望执行绪完全停止,还是仅在单步操作期间停止(help set scheduler-locking有关更多详细信息,请参阅 参考资料)。

一旦执行绪被锁定,您就可以使用它info threads来检查其余执行绪当时在做什么。您可以使用thread <<n>>更改为第 n 个执行绪并用于where检查执行绪堆栈。

这是调度程序设定为 的示例step您可以看到只有一个执行绪执行了该next命令。

(gdb) b 37
Breakpoint 1 at 0x1388: file test003.c, line 37.
(gdb) r
Starting program: /home/jordan/Development/tmptest/a.out
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
[New Thread 0x7ffff7d90700 (LWP 4002538)]
philosopher 0 is thinking
[New Thread 0x7ffff758f700 (LWP 4002539)]
philosopher 1 is thinking
[New Thread 0x7ffff6d8e700 (LWP 4002540)]
philosopher 2 is thinking
[2] picking 3
[New Thread 0x7ffff658d700 (LWP 4002541)]
[Switching to Thread 0x7ffff6d8e700 (LWP 4002540)]

Thread 4 "a.out" hit Breakpoint 1, philosopher (ph_num=0x2) at test003.c:37
37              sem_wait(&chopstick[(num   1) % THREADS]);
(gdb) set scheduler-locking step
(gdb) info threads
  Id   Target Id                                   Frame
  1    Thread 0x7ffff7d91740 (LWP 4002534) "a.out" clone () at ../sysdeps/unix/sysv/linux/x86_64/clone.S:78
  2    Thread 0x7ffff7d90700 (LWP 4002538) "a.out" 0x00007ffff7e743bf in __GI___clock_nanosleep (clock_id=clock_id@entry=0, flags=flags@entry=0,
    req=req@entry=0x7ffff7d8fe60, rem=rem@entry=0x7ffff7d8fe60) at ../sysdeps/unix/sysv/linux/clock_nanosleep.c:78
  3    Thread 0x7ffff758f700 (LWP 4002539) "a.out" 0x00007ffff7e743bf in __GI___clock_nanosleep (clock_id=clock_id@entry=0, flags=flags@entry=0,
    req=req@entry=0x7ffff758ee60, rem=rem@entry=0x7ffff758ee60) at ../sysdeps/unix/sysv/linux/clock_nanosleep.c:78
* 4    Thread 0x7ffff6d8e700 (LWP 4002540) "a.out" philosopher (ph_num=0x2) at test003.c:37
  5    Thread 0x7ffff658d700 (LWP 4002541) "a.out" clone () at ../sysdeps/unix/sysv/linux/x86_64/clone.S:78
(gdb) n
38              printf("[%i] picked %i\n", num, (num   1) % THREADS);
(gdb) info threads
  Id   Target Id                                   Frame
  1    Thread 0x7ffff7d91740 (LWP 4002534) "a.out" clone () at ../sysdeps/unix/sysv/linux/x86_64/clone.S:78
  2    Thread 0x7ffff7d90700 (LWP 4002538) "a.out" 0x00007ffff7e743bf in __GI___clock_nanosleep (clock_id=clock_id@entry=0, flags=flags@entry=0,
    req=req@entry=0x7ffff7d8fe60, rem=rem@entry=0x7ffff7d8fe60) at ../sysdeps/unix/sysv/linux/clock_nanosleep.c:78
  3    Thread 0x7ffff758f700 (LWP 4002539) "a.out" 0x00007ffff7e743bf in __GI___clock_nanosleep (clock_id=clock_id@entry=0, flags=flags@entry=0,
    req=req@entry=0x7ffff758ee60, rem=rem@entry=0x7ffff758ee60) at ../sysdeps/unix/sysv/linux/clock_nanosleep.c:78
* 4    Thread 0x7ffff6d8e700 (LWP 4002540) "a.out" philosopher (ph_num=0x2) at test003.c:38
  5    Thread 0x7ffff658d700 (LWP 4002541) "a.out" clone () at ../sysdeps/unix/sysv/linux/x86_64/clone.S:78

如您所见,执行 next 后,我??仍停留在同一个执行绪上,而其他执行绪没有进展。

我已经修改了代码以使正在发生的事情更加明显,这是我使用的代码:

#include <stdio.h>
#include <string.h>
#include <pthread.h>
#include <semaphore.h>
#include <unistd.h>
#include <stdlib.h>

#define THREADS 5

sem_t chopstick[THREADS];

void thinking(int ph_num)
{
    printf("philosopher %d is thinking\n", ph_num);
    int t = rand() % 3;
    sleep(t);// up to 3 secs thinking
}

void eat(int ph_num)
{
    printf("philosopher %d is eating\n", ph_num);
    int t = rand() % 3;
    sleep(t);// up to 3 secs eating
}

void *philosopher(void * ph_num )
{
    int num=(int)ph_num;
    while(1)
    {
        if(num < THREADS - 1)
        {
            thinking(num);

            //pick up right chopstick
            printf("[%i] picking %i\n", num, (num   1) % THREADS);
            sem_wait(&chopstick[(num   1) % THREADS]);
            printf("[%i] picked %i\n", num, (num   1) % THREADS);

            //to make deadlocks absolutly happen, wait 1 sec then pickup left chopstick
            //sleep(1);

            //pick up left chopstick
            printf("[%i] picking %i\n", num, num);
            sem_wait(&chopstick[num]);
            printf("[%i] picked %i\n", num, num);

            eat(num);

            //put down right chopstick
            printf("[%i] put %i\n", num, (num   1) % THREADS);
            sem_post(&chopstick[(num   1) % THREADS]);

            //put down left chopstick
            printf("[%i] put %i\n", num, num);
            sem_post(&chopstick[num]);
        }

        else // last one pick left chopstick first, instead of right one to avoid cyclic wait
        {
            thinking(num);

            //pick up left chopstick
            printf("[%i] picking %i\n", num, num);
            sem_wait(&chopstick[num]);
            printf("[%i] picked %i\n", num, num);

            //to make deadlocks absolutly happen, wait 1 sec then pickup left chopstick
            //sleep(1);

            //pick up right chopstick
            printf("[%i] picking %i\n", num, num 1);
            sem_wait(&chopstick[(num   1) % THREADS]);
            printf("[%i] picked %i\n", num, num 1);

            eat(num);

            //put down left chopstick
            printf("[%i] put %i\n", num, num);
            sem_post(&chopstick[num]);

            //put down right chopstick
            printf("[%i] put %i\n", num, (num   1) % THREADS);
            sem_post(&chopstick[(num   1) % THREADS]);
        }
    }

    pthread_exit((void *)num);
}

int main ()
{
    for(int i = 0; i < THREADS; i  )
    {
        sem_init(&chopstick[i],0,1);
    }

    pthread_t threads[THREADS];

    for(int i = 0; i < THREADS; i  )
        pthread_create(&threads[i], NULL, philosopher, (void *)i);

    for(int i = 0; i < THREADS; i  )
        pthread_join(threads[i],NULL);
    return 0;
}
标签:

0 评论

发表评论

您的电子邮件地址不会被公开。 必填的字段已做标记 *